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1 Introduction

Nonlinear block-oriented systems, including the

Hammerstein, Wiener and feedback-nonlinear ones have

attracted considerable research interest both from the indus-

trial and academic environments [1, 2, 3, 4]. On the other

hand, it is well known that orthonormal basis functions

(OBF) have proved to be useful in identification and control

of dynamical systems, including nonlinear block-oriented

systems [5, 6, 7, 8]. In particular, an inverse OBF (IOBF)

modeling approach has been effective in identification of a

linear dynamic part of the Hammerstein system [5]. The

approach provides the so-called separability in estimation

of linear and nonlinear submodels [6], thus eliminating the

bilinearity issue detrimentally affecting e.g. the ARX-based

modeling schemes. The IOBF modeling approach is

continued to be efficiently used here to model a linear

fractional-order dynamic part of the Hammerstein system.

Recently, fractional-order dynamics have been given a

huge research interest, mostly for linear systems [9, 10, 11,

12, 13, 14, 15, 16, 17].

Discrete-time fractional-order OBF-based modeling is a

new research area and there is a few papers on the topic that

has up to date been available [18, 19, 20, 21, 22]. Those

papers illustrate that fractional-order discrete Laguerre

filters can be very effective in modeling of dynamical

systems.

A fractional-order Hammerstein system has been ele-

gantly analyzed and identified in Ref. [23]. However, a

computational burden of the approach is very high, in fact

prohibitively high in adaptive estimation and control.

This paper presents a new, simple strategy for

Hammerstein system identification, which is a combination

of the inverse-OBF modeling concept and fractional-order

generalization of discrete Laguerre filters. The effective

combination gives rise to the introduction of a powerful

method for identification of the fractional-order

Hammerstein system.

2 Fractional-Order Discrete-Time
Difference

A simple generalization of the familiar Grünwald-Letnikov

difference [11] is the fractional difference (FD) in discrete

time t, described by equation [9, 13, 14, 24]

ΔαxðtÞ ¼
Xt

j¼0

PjðαÞxðtÞq�j ¼ xðtÞ

þ
Xt

j¼1

PjðαÞxðtÞq�j t ¼ 0, 1, . . .

ð1Þ

where α ∈ (0, 2) is the fractional order, q�1 is the backward

shift operator and

PjðαÞ ¼ ð�1ÞjγjðαÞ ð2Þ

with

γjðαÞ ¼
α

j

� �
¼

1 j ¼ 0
αðα� 1Þ:::ðα� jþ 1Þ

j!
j > 0

8<
: ð3Þ

Note that each element in Eqn. (1) from time t back to 0 is

nonzero so that each incoming sample of the signal x(t)

increases the complication of the model equation. In the

limit, with t ! +1, we end up with computational explo-

sion. Therefore in [25], truncated or finite fractional dif-

ference (FFD) has been considered for practical,
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feasibility reasons. Finite fractional difference (FFD) is

defined as

Δαxðt, JÞ ¼ xðtÞ þ
XJ
j¼1

PjðαÞxðtÞq�j ð4Þ

where J ¼ minðt, JÞ and J is the upper bound for j when

t > J .

In this paper, we assume that α is known.

Remark 1. Possible accounting for the sampling

period T when transferring from the Grünwald-Letnikov

continuous-time derivative to the Grünwald-Letnikov

discrete-time difference results in dividing the right-hand

side of Eqns. (1) and (4) by Tα. Operating without Tα as in

the sequel corresponds to putting T ¼ 1 or to the substitution

of Pj(α) for
PjðαÞ
Tα , j ¼ 0, . . ., t.

3 Fractional-Order Discrete-Time
Laguerre Filters

A classical (or integer-order, or “regular”) OBF model of a

dynamical system, or shortly, OBF system, can be presented

in form

yðtÞ ¼
XK
i¼1

CiLiðqÞuðtÞ þ eðtÞ ð5Þ

where u(t) and y(t) are the system input and output, respec-

tively, Li(z) and Ci, i ¼ 1, . . . , K, are orthonormal transfer

functions and weighting parameters, respectively and e(t) is

the output error. In case of use of discrete Laguerre filters we

have

LiðzÞ ¼ k

z� P

�Pzþ 1

z� P

� �i�1

i ¼ 1, :::,K ð6Þ

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� P2

p
and P is a dominant pole. In the sequel,

we limit our interest to the practically justified case of

P > 0. The unknown parameters Ci, i ¼ 1, . . ., K, can be

easily estimated using e.g. Recursive Least Squares (RLS) or

Least Mean Squares (LMS) algorithms formalized in a linear

regression fashion [26]. In our examples, RLS estimation is

used. Pursuing an optimal Laguerre pole Popt has been well

established [7, 8, 27, 28, 29].

The Laguerre filters presented in Eqn. (6), can be

factorized to the form [25, 20, 21]

Liðq�1Þ ¼ GLðq�1ÞðGRðq�1Þ � PÞi�1 i ¼ 1, :::,K ð7Þ

with

GLðq�1Þ ¼ kq�1

1� Pq�1 ð8Þ

GRðq�1Þ ¼ k2q�1

1� Pq�1
¼ kGLðq�1Þ ð9Þ

and the consecutive filter outputs being yLðtÞ ¼ GLðq�1ÞuðtÞ
and yiRðtÞ ¼ GRðq�1ÞUiðtÞ, i ¼ 1, :::,K � 1, with

UiðtÞ ¼ yLðtÞ i ¼ 1

yi�1
R ðtÞ � PUi�1ðtÞ i ¼ 2, :::,K

�
ð10Þ

The two filters can also be described as

Gf
L :

ΔyLðtÞ ¼ ðP� 1ÞyLðtÞq�1 þ kuðtÞq�1 ð11Þ

Gf
R :

ΔyiRðtÞ ¼ ðP� 1ÞyiRðtÞq�1 þ k2UiðtÞq�1 ð12Þ

where ΔyLðtÞ ¼ yLðtÞ � yLðt� 1Þ and similar is Δ yR
i(t),

i ¼ 1, . . . , K.

The outstanding value of the factorization (7) of the

expression (6) is that GL(q
�1) and GR(q

�1) are the first-

order filters that can be easily adopted to the fractional-

order form. The fraction-formalized filters GL
f(q�1) and

GR
f(q�1) can now be described as

Gf
L :

ΔαyLðtÞ ¼ ðP� 1ÞyLðtÞq�1 þ kuðtÞq�1 ð13Þ

Gf
R :

ΔαyiRðtÞ ¼ ðP� 1ÞyiRðtÞq�1 þ k2UiðtÞq�1 ð14Þ

where Ui(t) is as in Eqn. (10). Finally, the outputs from the

FD versions of the GL(q
�1) and GR(q

�1) filters can be

obtained as

Gf
L :

yLðtÞ ¼ ðP� 1ÞyLðtÞq�1 þ kuðtÞq�1 �
Xt

j¼1
PjðαÞyLðtÞq�j

ð15Þ

Gf
R :

yiRðtÞ ¼ ðP� 1ÞyiRðtÞq�1 þ k2UiðtÞq�1 �
Xt

j¼1
PjðαÞyiRðtÞq�j

ð16Þ
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The outputs for FFD versions of the GL(q
�1) and GR(q

�1)

filters can be calculated as

Gf
L :

yLðtÞ ¼ ðP� 1ÞyLðtÞq�1 þ kuðtÞq�1 �
XJ

j¼1
PjðαÞyLðtÞq�j

ð17Þ

Gf
R :

yiRðtÞ ¼ ðP� 1ÞyiRðtÞq�1 þ k2UiðtÞq�1 �
XJ

j¼1
PjðαÞyiRðtÞq�j

ð18Þ

Remark 2. Possible accounting for the sampling period T

when transferring from the Grünwald-Letnikov continuous-

time derivative to the Grünwald-Letnikov discrete-time dif-

ference results in multiplication of the two first components

at the right-hand sides of Eqns. (17) and (18) by Tα.

Finally, the output (5) from the fractional-order Laguerre

system is computed as

yðtÞ ¼
XK
i¼1

CiUiðtÞ ð19Þ

with Ui(t) calculated in Eqn. (10).

4 System description

4.1 Non-fractional case [6, 8, 30]

The Hammerstein system (Fig. 1) consists of two cascaded

elements, where the first one is a nonlinear memoryless gain

and the second is a linear dynamic model. The whole

Hammerstein system can be described by the equation

yðtÞ ¼ GðqÞ f ðuðtÞÞ þ eHðtÞ½ � ¼ GðqÞ vðtÞ þ eHðtÞ½ � ð20Þ

where G(q) models a dynamic linear part, f(.) describes a

nonlinear function, v(t) is the unmeasured output of the

nonlinear part and eH(t) is the error/distur-bance term. An

alternative output error/disturbance formulation is also pos-

sible. In case of use of the inverse OBF (IOBF) concept to

model a linear dynamic part, the Hammerstein model equa-

tion can be presented in inverse form [6, 30]

Ĝ�1ðqÞŷðtÞ ¼ vðtÞ ð21Þ

or

RðqÞŷðtÞ ¼ vðtÞ ð22Þ

where R(q) is the inverse of the system model ĜðqÞ. In the

IOBF concept, the inverse R(q) of the system is modeled

using OBF. An OBF modeling approach can now be applied

to equation (22) instead of (21) and finally we can present

equation (20) in the following form [6, 30]

yðtÞ þ
XM
i¼1

CiLiðqÞyðtÞ ¼ 1

r0
vðt� dÞ þ e1ðtÞ ð23Þ

where e1(t) is the equation error, d is the time delay of the

system, and r0 is the leading coefficient of R(q).

The nonlinear part of the Hammerstein system f(. ) can be

approximated e.g. with the polynomial expansion

vðtÞ ¼ f ðuðtÞÞ ¼ a1uðtÞ þ a2u
2ðtÞ þ :::þ amu

mðtÞ ð24Þ

with the coefficient a1 put to 1 without loss of generality

[30].

Combining equations (23) and (24) we arrive at the equa-

tion describing the model output ŷðtÞ of the whole

Hammerstein system

ŷðtÞ ¼ �
XM
i¼1

CiLiðqÞyðtÞ þ 1

r0

Xm
i¼1

aiu
iðt� dÞ ð25Þ

with linear and nonlinear submodels separated from each

other. Now that the bilinearity effect has been avoided

thanks to the separation of the submodels, Eqn. (25) can be

easily presented in the linear regression form.

4.2 Fractional-order case

We assume now that a linear dynamics is of fractional order.

In order to embed the fractional-order Laguerre filters of

Section 3 in the IOBF framework the following important

remark is due.

Remark 3. It is essential that the Laguerre filters are, in the

IOBF framework, driven by y(t). This means that in order to

calculate the fractional-order output equation (20) in the

IOBF fashion we have to substitute y(t) for u(t) in Eqns.

(13), (15) and (17).

Equation (25) can now be rewritten in form

G(q)f(.)
v(t)

eH(t)

u(t) y(t)

Fig. 1 Hammerstein system
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ŷðtÞ ¼ �
XM
i¼1

CiUiðtÞ þ 1

r0

Xm
i¼1

aiu
iðt� dÞ ð26Þ

which can be presented in a linear regression form

ŷðtÞ ¼ φTðtÞΘ ð27Þ

whereΘT ¼ ½C1 ::: CM β1 ::: βm� and φTðtÞ ¼ ½�U1

ðtÞ ::: � UMðtÞ uðt� dÞ ::: umðt� dÞ� with βi ¼ ai
=r0 and Ui(t), i ¼ 1, . . . , M driven by y(t) as in Remark 3.

Now, the parameters Θ can be easily estimated using e.g. the

RLS algorithm (or its adaptive version ALS).

5 Simulation Experiments

Example 1 Consider a discrete fractional-order Ham-

merstein system, with a static nonlinearity f(u(t)) ¼ u3(t)

and a fractional-order dynamic part described in state-space

Δαxðtþ 1Þ ¼ Af xðtÞ þ BuðtÞ, ð28Þ

yðtÞ ¼ CxðtÞ þ DuðtÞ ð29Þ

with

Af ¼ �0:4 �0:03
1 0

� �
, B ¼ 1

0

� �
,

C ¼ 0 0:23½ �, D ¼ 0½ �,
α ¼ 0:5

The dynamic part is modeled by an FFD-based fractional-

order Laguerre model, with P ¼ 0. 49, M ¼ 8, m ¼ 3

and various implementation lengths of the FFD approxima-

tion (J). MSPE is used to evaluate the accuracy of modeling.

Selected results are presented in Table 1.

Fig. 2 presents the results of modeling in terms of (indis-

tinguishable) time plots of the actual and modeled outputs of

the Hammerstein system for some random input signal.

It can be concluded from Fig. 2 and Table 1 that the

introduced fractional-order Laguerre-Hammerstein model

can be very effective in modeling of the class of block-

oriented nonlinear systems. However, to obtain high

modeling accuracies we have to use high implementation

lengths of the FFD approximation. This inconvenience can

be essentially reduced by making use of our computationally

more efficient approximations to FD, that is AFFD,

Table 1 MSPE for Hammerstein system with the FFD-based Laguerre

model

J 50 200 500 1000 5000

MSPE 1.637 0.578 0.182 0.107 8.79e-2

3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445

2

4

6

8

10

12

14

t[samples]

actual system  
and its model outputs
(indistinguishable) 

y(
t)

, 
y(

t)
ˆ

Fig. 2 Time plots of actual and

modeled output of the Laguerre-

Hammerstein system
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PFFD [31], FLD and, in particular, FFLD [18]. Plots of the

actual nonlinear static characteristic and its reconstruction

presented in Fig. 3 confirm a very good identification per-

formance. Right the same is with reconstruction of the linear

part, in terms of indistinguishable respective impulse

responses.

Example 2. Consider the fractional-order nonlinear system

as in Example 1, with the zero mean disturbance eH(t) and
var(eH(t)) ¼ 0.1.

Although the MSPEs are now visibly higher, the modeled

nonlinear characteristic is, again, indistinguishable from the

original one. However, a model of the linear dynamic sub-

system is less precisely reconstructed and this is caused by

the specific location of the noise eH(t). Still, the dynamic

model accuracy is very good here.

6 Conclusion

The paper has presented a new simple, analytical solution

to the nonlinear identification problem for the

Hammerstein system using fractional-order Laguerre-

based models. We have demonstrated that a combination

of the inverse OBF modeling concept and fractional-order

Laguerre filters can provide high-perfor-mance identifica-

tion of fractional-order nonlinear systems. Simulation

examples show that in both deterministic and stochastic

cases, low prediction errors and accurate reconstructions of

both nonlinear and linear parts of the system have been

obtained for the introduced models.
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